Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo.
نویسندگان
چکیده
The asymmetry of the dorsal-ventral pattern of the Drosophila embryo appears to depend on the ventral activation of the transmembrane Toll protein. The Toll protein is found around the entire dorsal-ventral circumference of the embryo, and it appears to act as a receptor for a ventral, extracellular signal and to then relay that signal to the cytoplasm in ventral regions of the embryo. Three of five recessive loss-of-function alleles of Toll are caused by point mutations in the region of the cytoplasmic domain of Toll that is similar to the mammalian interleukin-1 receptor, supporting the hypothesis that Toll acts as a signal-transducing receptor. Nine dominant gain-of-function alleles that cause Toll to be active in dorsal, as well as ventral, regions of the embryo are caused by mutations in the extracellular domain. Three of the dominant alleles appear to cause the protein to be constitutively active and are caused by cysteine-to-tyrosine changes immediately outside the transmembrane domain. All six of the remaining dominant alleles require the presence of a wild-type transmembrane Toll protein for their ventralizing effect and all encode truncated proteins that lack the transmembrane and cytoplasmic domains.
منابع مشابه
Plasma membrane localization of the Toll protein in the syncytial Drosophila embryo: importance of transmembrane signaling for dorsal-ventral pattern formation.
Formation of the Drosophila embryo's dorsal-ventral pattern requires the maternal product of the Toll gene. DNA sequence and genetic analyses together suggested that the Toll gene product is a transmembrane protein which communicates information from an extracytoplasmic compartment to the cytoplasm. Using antibodies as probes, we show that the Toll protein is a 135 x 10(3) Mr glycoprotein which...
متن کاملEstablishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product.
Within the group of maternal effect genes necessary for the establishment of the dorsal-ventral pattern of the Drosophila embryo, the Toll gene mutates to give a singular variety of embryonic phenotypes. Lack of function alleles produce dorsalized embryos as a recessive maternal effect. Dominant gain of function alleles result in ventralized embryos. Other recessive alleles cause partial dorsal...
متن کاملAn activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators.
A signaling pathway active on the ventral side of the Drosophila embryo defines dorsoventral polarity. A cell surface signal relayed by Toll, Tube and Pelle releases the Rel-related protein Dorsal from its cytoplasmic inhibitor Cactus; free Dorsal translocates into nuclei and directs expression of ventral fates. Using the yeast two-hybrid system and immunoprecipitation experiments, we define sc...
متن کاملInteraction of the pelle kinase with the membrane-associated protein tube is required for transduction of the dorsoventral signal in Drosophila embryos.
Within the Drosophila embryo, tube and the protein kinase pelle transduce an intracellular signal generated by the transmembrane receptor Toll. This signal directs import of the rel-related protein dorsal into ventral and ventrolateral nuclei, thereby establishing dorsoventral polarity. We show by immunolocalization that tube protein associates with the plasma membrane during interphase. We als...
متن کاملPattern Formation: The link between ovary and embryo
The Drosophila gene nudel may encode a spatially restricted serine protease involved in producing the ligand for the receptor Toll and linking dorsal-ventral polarity in the egg chamber to the developing embryonic axis. One of the important insights to have emerged from the study of early pattern formation in the Drosophila embryo is that the basic embryonic axes have their origins in the polar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 5 5 شماره
صفحات -
تاریخ انتشار 1991